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LETTER TO THE EDITOR 

Absence of localization in disordered systems with local 
correlation 

J C Flores and M Hilket 
Departemen1 de Physique Theorique, Universite de Gen&ve, 24 quai h e s t  Ansennei. 
CH-1211 GerRve 4. Swibzrland 

Received 8 October 1993 

Abstract. In m early work by Dunlap eta1 it was conjectured, using a matrix-transfer appmach, 
that diagonal-disordered systems with local correlation (dimer-models) exhibif an absence of 
Anderson localization. In this letter we find explicitly these delocalized states. and energies, 
using a suitable unitary bansfomtion and the symmehies related to the model. Moreover, we 
expand lhese states amund lhe critical energy and find a new I/- divergence. 

The problem of one-dimensional disordered systems, has currently gained increased interest. 
The localization of all states in these systems has been widely accepted, since the pioneering 
work of Anderson [I]. But recently several mechanisms to delocalize those systems have 
been discovered. In two dimensions the magnetic field delocalizes states near the Landau 
levels in the quantum Hall effect. In one dimension polymers like polyaniline, when doped 
appropriately, exhibit very high conductivities [Z]. 

One of the simplest examples of delocalization due to local correlations, is the off- 
diagonal discrete disordered system [3]. It corresponds to a biatomic tight-binding alloy 
model, where the disorder is caused by altered spacings. The associated Schrodinger 
equation is 

4 + 1 ' h + i  + D/@r-i = Etlrr &+I = Du (1) 

where 0 2  are random independent quantities. Equation (1) has a delocalized state for E = 0 
corresponding to = 0 and +y+?r+l = (i)' whereby the localization length diverges as 1 / E z .  
This is in contrast with the model without correlations, where the localization length diverges 
in the band centre, but the envelope of the wavefunction behaves as e-Ji [4]. In our case 
the envelope is independent of I .  Therefore these states are extended in the same sense 
as BIoch wavefunctions. For continuous Kronnig-Penny disordered models, delocalization 
due to correlations have been noticed 161. 

In this letter we study the so-called disordered diagonal dimer model corresponding to 
a one-dimensional tight-binding binary alloy, where the random site energies are assigned 
painvise. The model was originally studied in [51 by using a transfermatrix method. As 
Dunlap et a1 [5] noticed, the number of extended states, for a finite system of size N 
is proportional to a. We work out the explicit extended wavefunction using symmetry 
properties. We then perturb this wavefunction around the critical energy and obtain a new 
I/z/Z-type divergence for the localization length, at the outer edges. 

t Supported in part by the Swiss Nationd Science Foundation 

0305-4470/93~41255*05$07.50 0 1993 IOP Publishing Ltd L1255 



L1256 Letter to the Editor 

Let us consider the disordered-diagonal tight-binding model described by the following 
Hamiltonian: 

H = V,ll)(ll + Y)(I  t 11 + I O ( l  - II (2) 

where Il) can be regarded as an atomic-lie orbital centred at site 1 E 2. V, is the random 
potential taking the values AV (binary-alloy) and satisfying the dimer condition of local 
correlation V2l-1 = Vu or, in terms of a probability distribution, 

P(Vu,  vu-I) = $6(Vu - VU-l)IS(V, - V )  + 6(Vu + VI1 (3) 

which shows explicitly that correlations between nearest sites exist. 
For practical purposes it is convenient to define the unitary transformation 

(111) = 2q) cos4 = v .  (4) 

The corresponding transformed Hamiltonian Hu can be written as 

HU = v,\~)(ll+e-'911)(1+ 11+2+11)(1- 11. (5 ) 

To solve the Schrodinger equation Hul@) = El@),  we consider the ansatz 

I@) x K l ( 1 2 1 )  4- 121+ 1)) (6)  

which is suggested by the symmetries of the model. We obtain for KI 

Using the dimer condition Vu+l = V,+Z, we derive the following condition on the energy 
E: 

(9) ( E  - VU+Z - e'+)(E - Vu+2 -e-'+) = 1 

which is satisfied for E = V .  We point out that the relation = V 2  = cos2 4 was used. 
Moreover, when (9) is verified, which is the case for E = V ,  we obtain from (7) and (8) 
that I K I + ,  I = 1K11. Therefore we can conclude that Ihii state at E = V is extended. namely, 
E = V corresponds to one delocalized state. It can be written explicitly from (8) as 

(10) ~ ~ + , = ( V - V u + z - e  ig ) e  i4 K I .  

In analogy, we can show the existence of another delocalized state for E = -V.  This 
can be achieved by considering states of the form 

I*) = -&(121) - 121 + 1)) (11) 
1 

and the corresponding coefficients are given by 

K1+, = ( v  + vu+z - 2') ~ " K I .  
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In this way, we show that the states corresponding to E = rkV are delocalized. The 
condition V < 1 is necessary in order to validate the transformation (4). This condition on 
the random binary-alloy potential is also obtained in [5].  

We will now restrict ourselves to the edge, i.e. V = 1 ,  and, furthermore,  VU+^ = 
Vu+z = !VI+]. In this case (11) takes the simple form 

I 

I * ) = ~ * 1 l C  *z+l=*u=n(-wj). 
I i 

Rewriting (5) for the energy E = 1 + E’ we obtain 

? h + l  + !h-1 = (1 - Wl + € ~ ) * Z  *z+2 + *u = (1 - Wi.1 + €2)@2I+l . (14) 

We make the following Ansatz $1 + y&l where 

e, = 1 + f f l E  + 8 6 2  f ir  = WI and y ~ + l  = 1 .  (15) 

Considering E small, of the order 1 / N  where N is the size of the system, we restrict 
ourselves to the second order, yielding 

(16) l / f  = 1 -a, + (a? - PI) 2. 
Inserting (15) and (16) in (14) we obtain, by equating each order of 6, 

WISl = -aut1 WI+Iff21+2 = -Wl+1 (17) 

and 

2 
&I+] = wrff;+, - Wl&, + 1 821+1 = ffU+I - W+L&f+2 - 1 .  (18) 

Notice that U; = f l .  Moreover, we fix the initial condition as 
From (17) we obtain 

= 1 and WI = -1. 

w1au = -ff ff21+1 = ff (19) 

where 01 = a2 and ,3 = b2. In order to simplify (18) we fix ff2 = 2, and obtain 

If we take the probability p or (1 - p )  of the occurrence of either W, = +I or Wl = -1 
respectively, being close to 1, then If311 << N ,  so restricting us to the first order in E for the 
expression of $1. Inserting (19) and (20) in (15) yields 

We can now evaluate the complex Lyapounov exponent y defined as I71 
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where the complex logarithm is defined such that In(-x) = in + In(x), if x is real and 
positive. The Lyapounov exponent, or the inverse localization length L;’, is the real part of 
y and the integrated density of states 2 is the imaginary part. For the inverse localization 
length we obtain 

L;’ = p a  . E  

and for the integrated density of states 

2 = i(1 - P)(€+ 1). 

If we equate the localization length with the size N of the system, we can estimate the 
number of extended states, which will be of the order of unity and independent of N. 
Therefore none of these states would contribute to transport propem’es of the system. 

The result is the same if we consider V = -1. The general result for the localization 
length is hence 

1 L, - - m for E ’ 
and 

for E e -1. 
1 

d=Fv) Lc - 
In conclusion, starting from the diagonal disordered dimer model, we have found explicit 

extended states (10) and (12), with energies E = fV. Delocalized states for this model were 
obtained in [5] using a transfer-matrix method. They evaluated the reflection coefficient 
/RI2 of a single dimer impurity. When R is zero, adding up any number of dimer impurities 
does not alter the extended states. Moreover, they constructed a wavefunction, by adding a 
different phase whenever a dimer impurity occurs. Our approach is very different. We start 
from an ouerall disordered dimer model and use the symmetry properties of the model, and 
a unitary transformation, to end up with a solution for the wavefunction. It is equivalent to 
the one obtained in [5], if the same configuration of the dimer impurities is used. The point 
is that the solution is very direct, and does not imply calculating reflection coefficients. It 
is, moreover, almost stmightforward to obtain extended solutions for trimer and any-mer 
models. The problem in calculating the reflection coefficient, for just one dimer impurity, 
is that if it has a non-zero value one must add them up (in a non-trivial way) for each dimer 
impurity. For high concentrations of impurities this may become very difficult In OUT case, 
by perturbing the wavefunction, we immediately have a result for high concen&ations of 
dimer impurities. 

To understand the transport properties of these systems, it is important to know the 
behaviour around the critical energy. For the case V e 1, there is a superdiffisive behaviour 
at the critical energy [5], leading to a l / E Z  singularity of the localization length. This 
dependence doesn’t change if instead of dimers, any-mers are used [8]. Even in the non- 
diagonal disordered dimer model, the same singularity holds 131. Dunlap et nl [SI first 
argued that the number of extended states is proportional to 4%. Bovier 171 confirmed this 
result by calculating the integrated density of states, using the invariant measure formalism. 
He also showed that when V = 1 and ] E ]  < 1, the same proportionality in 4% holds, 
although the localization length diverges as 1 / E ,  in contrast to the case IEl > 1, where it 
diverges as 1 f 
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In order to estimate the transport properties, we have to keep in mind that the real 
energy is with the opposite sign, as the negative sign of the Schrodinger operator has been 
omitted in (2). Therefore the state Mth E = 1 corresponds to a lower level than the one 
with E = -1. Moreover, we restrict ourselves to the case V = 1. Therefore, when the 
Fermi energy Er z 1, no states will contribute to the conductivity, as follows from (24) 
and (7.5). However, for EF < 1 there will be a non-zero conductivity as the number of 
extended states is proportional to a. This clearly shows that the system exhibits a sharp 
mobility edge transition. 

Although notable progress has been made in understanding delocalization effects, there 
still remain important open questions. Up to now no general criteria are known leading to 
these effects. In the two-dimensional dimer model explicit extended Eigenhnctions can be 
found 191, but a general study of the effect of local correlations is still missing. 
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